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Summary

▶ Motivation
▶ Peer-to-peer data mining growing area of research for
analyzing data content, modeling user behavior and
computing network statistics

▶ Expectation maximization useful for data clustering, anomaly
detection, target tracking, and density estimation

▶ Contribution
▶ Provably correct local distributed asynchronous algorithm for
monitoring gaussian mixture model parameters in
peer-to-peer networks using expectation maximization

▶ Shows how second order statistics can be directly monitored
in a peer-to-peer network

▶ Application
▶ Clustering and fault isolation in (1) large scale sensor
networks such as embedded aircraft sensors on systems and
subsystems, (2) national air space for identifying anomalous
aircrafts

Motivation

Figure: Centralized vs. in-network computation

Overview of approach

▶ Monitoring phase
▶ Each peer maintains estimate of prior probability, mean,
covariance of the global (all peers’) data

▶ When data changes, peers jointly track this change
▶ Triggers alarm if model is outdated with respect to global data

▶ Computation phase
Convergecast: Sample data from network, build new model
Broadcast: Send new model to all peers

Background

▶ Input
▶ Data stream at each peer Si =

[−→xi ,1,
−→xi ,2, . . . ,

−−→xi ,mi

]
▶ k gaussians
▶ Global input G =

∪
i=1,...,p

Si

▶ Xi ,j: messages sent by Pi to Pj

▶ Set statistics
▶ Knowledge of Pi: Ki = Si

∪
Pj∈Γi

Xj ,i

▶ Agreement of Pi,Pj: Ai ,j = Xi ,j ∪ Xj ,i
▶ Withheld knowledge of Pi,Pj: Wi ,j = Ki ∖ Ai ,j

▶ Message: Xi ,j = Ki ∖ Xj ,i

Convex stopping rule

▶ For each Pi and for every Pj ∈ Γi, if
▶Ki ∈ R
▶Ai ,j ∈ R
▶Wi ,j ∈ R orWi ,j = ∅

then G ∈ R
Figure: Convex regions

Expectation maximization

Log-likelihood:

ℒ(Θ∣G) =

∑p
i=1
∑mi

a=1 log
(∑k

s=1 �sN (
−→xi ,a;−→�s,Cs)

)
∑p

i=1 mi

E-step:

qi ,s,a =
�sN

(−→xi ,a;−→�s,Cs
)∑k

r=1 �rN
(−→xi ,a;−→�r ,Cr

)
M-step:

�s =

∑p
i=1
∑mi

a=1 qi ,s,a∑p
i=1 mi

−→�s =

∑p
i=1
∑mi

a=1 qi ,s,a
−→xi ,a∑p

i=1
∑mi

a=1 qi ,s,a

Cs =

∑p
i=1
∑mi

a=1 qi ,s,a(
−→xi ,a −−→� s)(

−→xi ,a −−→� s)T∑p
i=1
∑mi

a=1 qi ,s,a

Algorithm details

▶ℒ(Θ̂∣G) =
∑p

i=1ℒi(Θ̂∣Si)∑p
i=1 mi

< �

▶ Err (�s) = ∣�s − �̂s∣ < �1

▶ Err (−→�s) =
∣∣∣∣∣∣−→�s − −̂→� s

∣∣∣∣∣∣ =

∣∣∣∣∣
∣∣∣∣∣
∑p

i=1
∑mi

a=1 qi ,s,a

[−→xi ,a−−̂→� s

]
∑p

i=1
∑mi

a=1 qi ,s,a

∣∣∣∣∣
∣∣∣∣∣ < �2

▶ Err (Cn
s ) =

∑d
k=1

{∑p
i=1
∑mi

a=1 qi ,s,ax2
i ,a.k∑p

i=1
∑mi

a=1 qi ,s,a
−
(∑p

i=1
∑mi

a=1 qi ,s,axi ,a.k∑p
i=1
∑mi

a=1 qi ,s,a

)2
}
− Ĉs < �3

Example: For for monitoring −→�s input: Si =
{

qi ,s,a

(−→xi ,a − −̂→� s

)}

Figure: Flowchart of algorithm

Synthetic data experiments

▶ Simulated data consists of multivariate correlated gaussians
with arbitrary parameters

▶ Parameters changed at fixed simulator intervals
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Figure: Experimental results in monitoring mode
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Figure: Experimental results in closed loop mode

Conclusions

▶ First algorithm for monitoring gaussian mixture model
parameters in a local completely decentralized fashion

▶ Extensive experimental results show low communication cost
and correctness of results
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